AP ${ }^{\circledR}$ CALCULUS BC 2016 SCORING GUIDELINES Question 3

The figure above shows the graph of the piecewise-linear function f. For $-4 \leq x \leq 12$, the function g is defined by $g(x)=$ $\int_{2}^{x} f(\mathrm{t}) d t$.
(a) Does g have a relative minimum, a relative maximum, or neither at $x=10$? Justify your answer.
(b) Does the graph of g have a point of inflection at $x=4$? Justify your answer.
(c) Fund the absolute minimum value and the absolute maximum value of g on the interval $-4 \leq x \leq 12$. Justify your
 answers.

Graph of f
(d) For $-4 \leq x \leq 12$, find all intervals for which $g(x) \leq 0$.
(a) $\quad g^{\prime}(x)=f(x) \mathrm{f}(\mathrm{x})$ is not changing signs at $\mathrm{x}=$ 10 so there is neither a minimum nor maximum
(b) $\quad g^{\prime}(x)=f(x), g^{\prime \prime}(x)=f(x)$, a point of inflection occurs when the second derivative changes signs, at $x=4, f(x)$ has a maximum, meaning $f(x)$ goes from positive to negative.
(c) $\quad g^{\prime}(x)=f(x)$ which changes sign at $x=-2, x=$ 6 , and the end points $x=4, x=12$
$g^{\prime}(-2)=\int_{2}^{-2} f(t) d t=-8$
$g^{\prime}(-4)=\int_{2}^{-4} f(t) d t=-4$
$g^{\prime}(6)=\int_{2}^{6} f(t) d t=8$
$g^{\prime}(12)=\int_{2}^{12} f(t) d t=-4$
(d) $[-4,2] U[10,12]$
$2:\left\{\begin{array}{l}1: g^{\prime}(x)=f(x) \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: g^{\prime \prime}(x)=f^{\prime}(x) \\ 1: \text { answer }\end{array}\right.$

$$
4:\left\{\begin{array}{l}
1: x=-2, x=-6 \text { and endpoints } \\
1: \text { integrals } \\
1: \text { answer }
\end{array}\right.
$$

1 : answer

