AP© CALCULUS BC 2016 SCORING GUIDELINES Question 3

The figure above shows the graph of the piecewise-linear function *f*. For $-4 \le x \le 12$, the function *g* is defined by $g(x) = \int_{2}^{x} f(t) dt$.

(a) Does *g* have a relative minimum, a relative maximum, or neither at x = 10? Justify your answer.

(b) Does the graph of *g* have a point of inflection at x = 4 ? Justify your answer.

(c) Fund the absolute minimum value and the absolute (-4 maximum value of g on the interval $-4 \le x \le 12$. Justify your answers.

(d) For $-4 \le x \le 12$, find all intervals for which $g(x) \le 0$.

- (a) g'(x) = f(x) f(x) is not changing signs at x = 10 so there is neither a minimum nor maximum
 (b) g'(x) = f(x), g"(x) = f'(x), a point of inflection occurs when the second derivative changes signs, at x = 4, f(x) has a maximum,
- (c) g'(x) = f(x) which changes sign at x = -2, x =
- 6, and the end points x = 4, x = 12 $g'(-2) = \int_{2}^{-2} f(t) dt = -8$ $g'(-4) = \int_{2}^{-4} f(t) dt = -4$ $g'(6) = \int_{2}^{6} f(t) dt = 8$ $g'(12) = \int_{2}^{12} f(t) dt = -4$

(d) [-4,2]U[10,12]

2: 1: g'(x) = f(x)1: answer

1:
$$g''(x) = f'(x)$$

1: answer

1 : changing signs
1 : x = -2, x = -6 and endpoints
1 : integrals
1 : answer

1 : answer