2016 AP $^{\oplus}$ CALCULUS BC FREE-RESPONSE QUESTIONS

4. Consider the differential equation $\frac{d y}{d x}=x^{2}-\frac{1}{2} y$.
(a) Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y.
(b) Let $y=f(x)$ be the particular solution to the given differential equation whose graph passes through the point $(-2,8)$. Does the graph of f have a relative minimum, a relative maximum, or neither at the point $(-2,8)$? Justify your answer.
(c) Let $y=g(x)$ be the particular solution to the given differential equation with $g(-1)=2$. Find $\lim _{x \rightarrow-1}\left(\frac{g(x)-2}{3(x+1)^{2}}\right)$. Show the work that leads to your answer.
(d) Let $y=h(x)$ be the particular solution to the given differential equation with $h(0)=2$. Use Euler's method, starting at $x=0$ with two steps of equal size, to approximate $h(1)$.
(a) $\frac{d^{2} y}{d x^{2}}=2 x-\frac{1}{2} \frac{d y}{d x}=2 x-\frac{1}{2}\left(x^{2}-\frac{1}{2} y\right)=2 x-\frac{x^{2}}{2}+\frac{1}{4} y$
(b) $\left.\frac{d y}{d x}\right|_{(-2,8)}=(-2)^{2}-\frac{1}{2}(8)=0$
$\left.\frac{d^{2} y}{d x^{2}}\right|_{(-2,8)}=2(-2)-\frac{1}{2}(-2)^{2}+\frac{1}{4}(8)=-4>0$
f has a relative maximum at $(-2,8)$ because $\left.\frac{d y}{d x}\right|_{(-2,8)}=0$
and is decreasing, going from positive to negative, which means that f goes from increasing to decreasing
(c) $\lim _{x \rightarrow-1}\left(\frac{g(x)-2}{3(x+1)^{2}}\right)=\frac{0}{0}$

Using L'Hospital's Rule:
$\lim _{x \rightarrow-1}\left(\frac{g^{\prime}(x)}{6(x+1)}\right)=\frac{0}{0}$
UsingL'Hospital's Rule:
$\lim _{x \rightarrow-1}\left(\frac{g^{\prime \prime}(x)}{6}\right)=\frac{g^{\prime \prime}(-1)}{6}=\frac{2(-1)-\frac{1}{2}(1)+\frac{1}{4}(2)}{6}=-\frac{1}{3}$
(d) $h(0)=\frac{1}{2}$
$h\left(\frac{1}{2}\right)=h(0)+h^{\prime}(0)\left(\frac{1}{2}\right)=2+\left(0-\frac{1}{2}(2)\right)\left(\frac{1}{2}\right)=\frac{3}{2}$
$h(1)=h\left(\frac{1}{2}\right)+h^{\prime}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{3}{2}+\left(\frac{1}{4}-\frac{1}{2}\left(\frac{3}{2}\right)\right)\left(\frac{1}{2}\right)=\frac{5}{4}$

2: $\begin{cases}1: & \text { implicit differentiation } \\ 1: & \text { answer }\end{cases}$
$3: \begin{cases}1: & \left.\frac{d y}{d x}\right|_{(-2,8)} \\ 1: & \left.\frac{d^{2} y}{d a^{2}}\right|_{(-2,8)} \\ 1: & \text { answer wit }\end{cases}$
answer with justification
$2: \begin{cases}1: & \text { L'Hospital's Rule } \\ 1: & \text { answer }\end{cases}$

2: $\begin{cases}1: & \text { Euler's Method } \\ 1: & \text { answer }\end{cases}$

