2016 AP[®] CALCULUS BC FREE-RESPONSE QUESTIONS

- 4. Consider the differential equation $\frac{dy}{dx} = x^2 \frac{1}{2}y$.
 - (a) Find $\frac{d^2y}{dx^2}$ in terms of x and y.
 - (b) Let y = f(x) be the particular solution to the given differential equation whose graph passes through the point (-2, 8). Does the graph of *f* have a relative minimum, a relative maximum, or neither at the point (-2, 8)? Justify your answer.
 - (c) Let y = g(x) be the particular solution to the given differential equation with g(-1) = 2. Find $\lim_{x \to -1} \left(\frac{g(x) 2}{3(x+1)^2}\right)$. Show the work that leads to your answer.
 - (d) Let y = h(x) be the particular solution to the given differential equation with h(0) = 2. Use Euler's method, starting at x = 0 with two steps of equal size, to approximate h(1).

(a)
$$\frac{d^2y}{dx^2} = 2x - \frac{1}{2}\frac{dy}{dx} = 2x - \frac{1}{2}\left(x^2 - \frac{1}{2}y\right) = 2x - \frac{x^2}{2} + \frac{1}{4}y$$

(b)
$$\frac{dy}{dx}\Big|_{(-2,8)} = (-2)^2 - \frac{1}{2}(8) = 0$$

 $\frac{d^2y}{dx^2}\Big|_{(-2,8)} = 2(-2) - \frac{1}{2}(-2)^2 + \frac{1}{4}(8) = -4 > 0$
f has a relative maximum at (-2,8) because $\frac{dy}{dx}\Big|_{(-2,8)} = 0$

and is decreasing, going from positive to negative, which means that *f* goes from increasing to decreasing

(c)
$$\lim_{x \to -1} \left(\frac{g(x) - 2}{3(x+1)^2} \right) = \frac{0}{0}$$

Using L'Hospital's Rule: $\lim_{x \to -1} \left(\frac{g'(x)}{6(x+1)} \right) = \frac{0}{0}$

UsingL'Hospital's Rule:

$$\lim_{x \to -1} \left(\frac{g''(x)}{6} \right) = \frac{g''(-1)}{6} = \frac{2(-1) - \frac{1}{2}(1) + \frac{1}{4}(2)}{6} = -\frac{1}{3}$$

(d)
$$h(0) = \frac{1}{2}$$

 $h\left(\frac{1}{2}\right) = h(0) + h'(0)\left(\frac{1}{2}\right) = 2 + \left(0 - \frac{1}{2}(2)\right)\left(\frac{1}{2}\right) = \frac{3}{2}$
 $h(1) = h\left(\frac{1}{2}\right) + h'\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{3}{2} + \left(\frac{1}{4} - \frac{1}{2}\left(\frac{3}{2}\right)\right)\left(\frac{1}{2}\right) = \frac{5}{4}$

2:
$$\begin{cases} 1: \text{ implicit differentiation} \\ 1: \text{ answer} \end{cases}$$

3: $\begin{cases} 1: \frac{dy}{dx}\Big|_{(-2,8)} \\ 1: \frac{d^2y}{dx^2}\Big|_{(-2,8)} \\ 1: \text{ answer with justification} \end{cases}$
2: $\begin{cases} 1: L'Hospital's Rule \\ 1: \text{ answer} \end{cases}$
2: $\begin{cases} 1: Euler's Method \\ 1: \text{ answer} \end{cases}$