AP[®] CALCULUS BC 2016 SCORING GUIDELINES

Question 5

- 5. The inside of a funnel of height 10 inches has circular cross sections, as shown in the figure above. At height *h*, the radius of the funnel is given by $r = \frac{1}{20}(3 + h^2)$, where $0 \le h \le 10$. The units of *r* and *h* are inches.
 - (a) Find the average value of the radius of the funnel.
 - (b) Find the volume of the funnel.
 - (c) The funnel contains liquid that is draining from the bottom. At the instant when the height of the liquid is h = 3 inches, the radius of the surface of the liquid is decreasing at a rate of $\frac{1}{5}$ inch per second. At this instant, what is the rate of change of the height of the liquid with respect to time?

(a)	$\frac{\frac{1}{20}(3+0^2) + \frac{1}{20}(3+10^2)}{2} \approx 2.65 \text{ inches}$	$2: \begin{cases} 1 : Equation for the average \\ 1 : Answer \end{cases}$
(b)	$\pi \int_0^{10} r(h)^2 dh$ is the total volume of the funnel between the height $0 \le h \le 10$ inches. $\pi \int_0^{10} \left(\frac{1}{20}(3+h)\right)^2 dh = 173.494$ Inches ²	$3 : \begin{cases} 1 : \text{Set up correct area equation} \\ 1 : \text{Plug in for } r \text{ and a correct interval} \\ 1 : \text{Answer} \end{cases}$
(c)	$r = \frac{3}{20} + \frac{h^2}{20}$ $\frac{d}{dh} \left(r = \frac{3}{20} + \frac{h^2}{20} \right) =$	$\begin{pmatrix} 1 : Differentiation equation \\ 1 : Correct dr \end{pmatrix}$
	$dr = \frac{h}{10} dh$ $\frac{1}{5} = \frac{3}{10} dh$	4 : $\begin{cases} 1 : & \text{Differentiation equation} \\ 1 : & \text{Correct dr} \\ 1 : & \text{Plug in right values} \\ 1 : & \text{Answer} \end{cases}$
	$5 10$ $\frac{2}{3} = dh$	