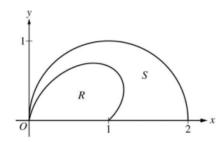
AP CALCULUS BC 2017 SCORING GUIDELINES

Question 2



- 2. The figure above shows the polar curves $r = f(\theta) = 1 + \sin \theta \cos(2\theta)$ and $r = g(\theta) = 2\cos \theta$ for $0 \le \theta \le \frac{\pi}{2}$. Let R be the region in the first quadrant bounded by the curve $r = f(\theta)$ and the x-axis. Let S be the region in the first quadrant bounded by the curve $r = f(\theta)$, the curve $r = g(\theta)$, and the x-axis.
 - (a) Find the area of R.
 - (b) The ray $\theta = k$, where $0 < k < \frac{\pi}{2}$, divides S into two regions of equal area. Write, but do not solve, an equation involving one or more integrals whose solution gives the value of k.
 - (c) For each θ , $0 \le \theta \le \frac{\pi}{2}$, let $w(\theta)$ be the distance between the points with polar coordinates $(f(\theta), \theta)$ and $(g(\theta), \theta)$. Write an expression for $w(\theta)$. Find w_A , the average value of $w(\theta)$ over the interval $0 \le \theta \le \frac{\pi}{2}$.
 - (d) Using the information from part (c), find the value of θ for which $w(\theta) = w_A$. Is the function $w(\theta)$ increasing or decreasing at that value of θ ? Give a reason for your answer.
- (a) $R = 1/2 \int_0^{\pi/2} f(\theta)^2 d\theta$ ≈ 0.648

1: limit, constant 1: integrand

(b) $\int_0^k (g(\theta) - f(\theta))^2 d\theta = \int_0^{\frac{\pi}{2}} (g(\theta) - f(\theta))^2 d\theta$

1: limit 1: integrand

(c)
$$w(\theta) = g(\theta) - f(\theta)$$

$$w_A = \frac{1}{\frac{\pi}{2}} \int_0^{\pi/2} w(\theta) d\theta \approx 0.485$$

$$2: \begin{cases} 1: \text{ expression of } w(\theta) \\ 1: \text{ expression of } w_A, \text{ answer} \end{cases}$$

(c)
$$w(\theta) = g(\theta) - f(\theta) = 0.485$$

 $\theta \approx 0.581$
 $w'(0.581) \approx -0.582$
Since $w'(\theta) < 0$, $w(\theta)$ is decreasing at $\theta = 0.581$

 $2: \left\{ \begin{array}{l} 1{:}\ value\ of\ \theta \\ 1{:}\ answer\ and\ explanation \end{array} \right.$