Question 3

3. The function f is differentiable on the closed interval $[-6,5]$ and satisfies $f(-2)=7$. The graph of f^{\prime}, the derivative of f, consists of a semicircle and three line segments, as shown in the figure above.
(a) Find the values of $f(-6)$ and $f(5)$.
(b) On what intervals is f increasing? Justify your answer.
(c) Find the absolute minimum value of f on the closed interval $[-6,5]$. Justify your answer.
(d) For each of $f^{\prime \prime}(-5)$ and $f^{\prime \prime}(3)$, find the value or explain why it does not exist.

(a) $f(-6)=f(-2)-\int_{-6}^{-2} f^{\prime}(x) d x$ $f(5)=f(-2)+\int_{-2}^{5} f^{\prime}(x) d x$
$f(-6)=3$ $f(5)=10-2 \pi$
(b) $f(x)$ is increasing on the intervals $-6<x<-2$ and $2<x<5$ because $f^{\prime}(x)$ is positive on these intervals.
(c) $f^{\prime}(x)$ changes sign at $x=-2$ and $x=2$

x	$f(x)$	
-6	3	The endpoints should be
-2	7	
2	$7-2 \pi$	
5	$10-2 \pi$	

On the closed interval $[-6,5]$ the absolute minimum value is $f(2)=7-2 \pi$.
(d) $f^{\prime \prime}(-5)=-\frac{1}{2}$: slope at $x=-5$

$$
\begin{aligned}
& f^{\prime \prime}(3): \text { does not exist } \\
& \lim _{x \rightarrow 3^{+}}\left(f^{\prime \prime}(x)\right) \neq \lim _{x \rightarrow 3^{-}}\left(f^{\prime \prime}(x)\right)
\end{aligned}
$$

$3:\left\{\begin{array}{l}1: \text { proper integrals } \\ 2: \text { both answers }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { justification } \\ 1: \text { intervals }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { justification - with the candidates test, } \\ \text { or a logical explanation based on the graph } \\ 1: \mathrm{x} \text { and } f(x) \text { values }\end{array}\right.$
$2:\left\{\begin{array}{l}\text { 1: answer for } f^{\prime \prime}(-5) \\ \text { 1: valid explanation for } f^{\prime \prime}(3)\end{array}\right.$

