Question 3

I

- 3. The function f is differentiable on the closed interval [-6, 5] and satisfies f(-2) = 7. The graph of f', the derivative of f, consists of a semicircle and three line segments, as shown in the figure above.
 - (a) Find the values of f(-6) and f(5).
 - (b) On what intervals is f increasing? Justify your answer.
 - (c) Find the absolute minimum value of f on the closed interval [-6, 5]. Justify your answer.
 - (d) For each of f''(-5) and f''(3), find the value or explain why it does not exist.

(a)
$$f(-6) = f(-2) - \int_{-6}^{-2} f'(x) dx$$

 $f(5) = f(-2) + \int_{-2}^{5} f'(x) dx$
 $f(-6) = 3$
 $f(5) = 10 - 2\pi$
(b) $f(x)$ is increasing on the intervals $-6 < x < -2$ and
 $2 < x < 5$ because $f'(x)$ is positive on these intervals.
(c) $f'(x)$ changes sign at $x = -2$ and $x = 2$
 $\frac{x}{-6} \frac{f(x)}{3}$ The endpoints should be
 $\frac{2}{2} 7 - 2\pi$ examined for justification
 $\frac{2}{2} 7 - 2\pi$.
(d) $f''(-5) = -\frac{1}{2}$: slope at $x = -5$
 $f''(3)$: does not exist
 $\lim_{x \to 3^{+}} (f''(x)) \neq \lim_{x \to 3^{-}} (f''(x))$
 $f''(3) : does not exist$
 $\lim_{x \to 3^{+}} (f''(x)) \neq \lim_{x \to 3^{-}} (f''(x))$
 $f''(3) : f'(x) = f(x) = f(x)$
 $f''(3) : f'(x) = f''(x)$