AP ${ }^{\circledR}$ CALCULUS BC 2017 SOCRING GUILDELINES

3. The function f is differentiable on the closed interval $[-6,5]$ and satisfies $f(-2)=7$. The graph of f^{\prime}, the derivative of f, consists of a semicircle and three line segments, as shown in the figure above.
(a) Find the values of $f(-6)$ and $f(5)$.
(b) On what intervals is f increasing? Justify your answer.
(c) Find the absolute minimum value of f on the closed interval $[-6,5]$. Justify your answer.
(d) For each of $f^{\prime \prime}(-5)$ and $f^{\prime \prime}(3)$, find the value or explain why it does not exist.
(a) $f(-6)=7-\int_{-6}^{-2} f^{\prime}(\mathrm{x}) d x=7-\left(\frac{1}{2}\right)(4 \cdot 2)=3$
$f(5)=7+\int_{-2}^{5} f^{\prime}(\mathrm{x}) d x=7-\frac{1}{2} \pi(2)^{2}+\left(\frac{1}{2}\right)(3 \cdot 2)=10-2 \pi$
(b) The graph of f is increasing on the intervals $-6<\mathrm{x}<-2$ and
$2<\mathrm{x}<5$ because f^{\prime} is positive on these intervals.
(c) The absolute minimum value of f could occur when $f^{\prime}(\mathrm{x})=0$ at $x=2$ or at the endpoints
$f(-6)=3$
$f(2)=f(-2)+\int_{-2}^{2} f^{\prime}(\mathrm{x}) d x=7-\frac{1}{2} \pi(2)^{2}=7-2 \pi$
$f(5)=10-2 \pi$
$f(2)<f(-6)<f(5)$
Therefore, the absolute minimum occurs at $\mathrm{x}=2$ and $f(2)=7-2 \pi$
(d) $f^{\prime \prime}(-5)=$ slope at $\mathrm{x}=5$ of $f^{\prime}=-\frac{1}{2}$
$f^{\prime \prime}(3)$ does not exist because the graph of f^{\prime} is not differentiable at $x=3$ because there is a corner.
$2:\left\{\begin{array}{l}1: f(-6) \text { answer } \\ 1: f(5) \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { two intervals } \\ 1: \text { justification }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { consider all possible candidates } \\ 1: \text { find and compare candidates } \\ 1: \text { answer with justification }\end{array}\right.$
$2:\left\{\begin{array}{l}1: f^{\prime \prime}(-6) \text { answer } \\ 1: f^{\prime \prime}(5) \text { answer with justification }\end{array}\right.$

