AP ${ }^{\circledR}$ CALCULUS BC 2017 SCORING GUIDELINES

Question 4

At time $t=0$, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ at time $t=0$, and the internal temperature of the potato is greater than $27^{\circ} \mathrm{C}$ for all times $\mathrm{t}>0$. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation $\frac{d H}{d t}=-\frac{1}{4}(H-27)$, where $H(t)$ is measured in degrees Celsius and $H(0)=91$.
(a) Write an equation for the line tangent to the graph of H at $\mathrm{t}=0$. Use this equation to approximate the internal temperature of the potato at time $t=3$
(b)Use $\frac{d^{2} H}{d t^{2}}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time $t=3$.
(c) For t < 10, an alternate model for the internal temperature of the potato at time t minutes is the function G that satisfies the differential equation $\frac{d G}{d t}=-(G-27)^{2 / 3}$, where $G(\mathrm{t})$ is measured in degrees Celsius and $G(0)=91$. Find an expression for $G(t)$. Based on this model, what is the internal temperature of the potato at time $t=3$?
(a) $\frac{d H}{d t}=-\frac{1}{4}((91)-27)=-16$

The tangent line is
$H=-16 t+91$
$H(3) \approx-48+91 \approx 43^{\circ} \mathrm{C}$
(b) $\frac{d^{2} H}{d t^{2}}=\frac{d}{d t}\left(\frac{d H}{d t}\right)=\frac{1}{16}(H-27)$

Therefore $\frac{d^{2} H}{d t^{2}}>0$ on the interval $0 \leq t \leq 3$ so the answer from part (a) is an underestimate.
(c) $\frac{d G}{d t}=-(G-27)^{\frac{2}{3}}$

$$
\begin{aligned}
& \int \frac{1}{(G-27)^{2 / 3}} d G=\int-d t \\
& 3(G-27)^{1 / 3}=-t+C \\
& 3((91)-27)^{1 / 3}=-(0)+C \Rightarrow C=12 \\
& 3(G-27)^{1 / 3}=-t+12 \\
& G(t)=\left(-\frac{t}{3}+4\right)^{3}+27 \\
& G(3)=\left(-\frac{3}{3}+4\right)^{3}+27=54^{\circ} \mathrm{C}
\end{aligned}
$$

$2:\left\{\begin{array}{l}1: \text { Tangent line } \\ 1: \text { answer }\end{array}\right.$

2: $\left\{\begin{array}{l}1: \frac{d^{2} H}{d t^{2}} \\ 1: \text { answ }\end{array}\right.$
1: answer with justification

$$
5:\left\{\begin{array}{l}
\text { 1: seperation of variables } \\
\text { 1: antiderivatives } \\
\text { 1: constant of integration } \\
\text { 1: uses initial condition } \\
\text { 1: anwser }
\end{array}\right.
$$

