2017 AP® CALCULUS BC FREE-RESPONSE QUESTIONS SCORING GUIDELINES Question 4

- At time t = 0, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius (°C) at time t = 0, and the internal temperature of the potato is greater than 27°C for all times t > 0. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation $\frac{dH}{dt} = -\frac{1}{4}(H-27)$, where H(t) is measured in degrees Celsius and H(0) = 91.
 - (a) Write an equation for the line tangent to the graph of H at t = 0. Use this equation to approximate the internal temperature of the potato at time t=3.
 - (b) Use $\frac{d^2H}{dt^2}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time t = 3.
 - (c) For t < 10, an alternate model for the internal temperature of the potato at time t minutes is the function</p> G that satisfies the differential equation $\frac{dG}{dt} = -(G-27)^2/3$, where G(t) is measured in degrees Celsius and G(0) = 91. Find an expression for G(t). Based on this model, what is the internal temperature of the potato at time t = 3?

(a)
$$H - H_0 = m(T - T_0)$$

 $H_0 = 91$
 $T_0 = 0$
 $m = \frac{dH}{dT}\Big|_{(T,H)=(0,91)} = -\frac{1}{4}(91 - 27) = -16$
An equation for the line tangent to (0,91) is $H(T) = 91 - 16T$

 $H(3) \approx 91 - (16 \cdot 3) = 43^{\circ}C$

$$\begin{array}{l} \text{(b)} \ \frac{d^2H}{dT^2} = \frac{d}{dT} \bigg(-\frac{1}{4} (H-27) \bigg) = -\frac{1}{4} \ \text{for all } t > 0 \\ \\ \frac{d^2H}{dT^2} < 0 \ \text{on the interval } 0 < t < 3 \\ \\ \text{The answer in part (a) is, therefore, an overestimate} \\ \\ \text{since } H(t) \ \text{will be concave down on } 0 < t < 3. \\ \end{array}$$

2: $\begin{cases}
1: \text{ tangent line equation using } \frac{dH}{dT} \Big|_{(0,91)} \\
1: \text{ answer (local linearity approximation)}
\end{cases}$

2:
$$\begin{cases} 1: \frac{d^2H}{dT^2} \text{ at } t=0\\ 1: \text{ answer with reason} \end{cases}$$

2017 AP® CALCULUS BC FREE-RESPONSE QUESTIONS SCORING GUIDELINES Question 4

- 4. At time t = 0, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius (°C) at time t = 0, and the internal temperature of the potato is greater than 27°C for all times t > 0. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation \(\frac{dH}{dt} = -\frac{1}{4}(H-27), \text{ where } H(t) \) is measured in degrees Celsius and \(H(0) = 91. \)
 - (a) Write an equation for the line tangent to the graph of H at t = 0. Use this equation to approximate the internal temperature of the potato at time t = 3.
 - (b) Use $\frac{d^2H}{dt^2}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time t = 3.
 - (c) For t < 10, an alternate model for the internal temperature of the potato at time t minutes is the function G that satisfies the differential equation $\frac{dG}{dt} = -(G-27)^2/3$, where G(t) is measured in degrees Celsius and G(0) = 91. Find an expression for G(t). Based on this model, what is the internal temperature of the potato at time t = 3?

(c)
$$(G-27)^{-\frac{2}{3}} dG = -dT$$

$$\int (G-27)^{-\frac{2}{3}} dG = -\int dT$$

$$3(G-27)^{\frac{1}{3}} = -T + C$$

$$3(91-27)^{\frac{1}{3}} = 0 + C \Longrightarrow C = 12$$

$$3(G-27)^{\frac{1}{3}} = -T + 12$$

$$(G-27)^{\frac{1}{3}} = -\frac{T}{3} + 4$$

$$((G-27)^{\frac{1}{3}})^3 = (-\frac{T}{3} + 4)^3$$

$$G(T) = \left(-\frac{T}{3} + 4\right)^3 + 27 \text{ for all times } T < 10$$

$$G(3) = \left(-\frac{3}{3} + 4\right)^3 + 27 = 54^{\circ}C$$

Note: max 2/5 [1-1-0-0-0] if no constant of integration

Note: 0/5 if no separation of variables