2017 AP $^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS SCORING GUIDELINES
 Question 4

4. At time $t=0$, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ at time $t=0$, and the internal temperature of the potato is greater than $27^{\circ} \mathrm{C}$ for all times $t>0$. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation $\frac{d H}{d t}=-\frac{1}{4}(H-27)$, where $H(t)$ is measured in degrees Celsius and $H(0)=91$.
(a) Write an equation for the line tangent to the graph of H at $t=0$. Use this equation to approximate the internal temperature of the potato at time $t=3$.
(b) Use $\frac{d^{2} H}{d t^{2}}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time $t=3$.
(c) For $t<10$, an alternate model for the internal temperature of the potato at time t minutes is the function G that satisfies the differential equation $\frac{d G}{d t}=-(G-27)^{2 / 3}$, where $G(t)$ is measured in degrees Celsius and $G(0)=91$. Find an expression for $G(t)$. Based on this model, what is the internal temperature of the potato at time $t=3$?
(a) $\mathrm{H}-\mathrm{H}_{0}=\mathrm{m}\left(\mathrm{T}-\mathrm{T}_{0}\right)$
$\mathrm{H}_{0}=91$
$\mathrm{T}_{0}=0$
$\mathrm{m}=\left.\frac{\mathrm{dH}}{\mathrm{dT}}\right|_{(\mathrm{T}, \mathrm{H})=(0,91)}=-\frac{1}{4}(91-27)=-16$
An equation for the line tangent to $(0,91)$ is $H(T)=91-16 T$ $H(3) \approx 91-(16 \cdot 3)=43^{\circ} \mathrm{C}$
(b) $\frac{\mathrm{d}^{2} \mathrm{H}}{\mathrm{dT}^{2}}=\frac{\mathrm{d}}{\mathrm{dT}}\left(-\frac{1}{4}(\mathrm{H}-27)\right)=-\frac{1}{4}$ for all $\mathrm{t}>0$
$\frac{\mathrm{d}^{2} \mathrm{H}}{\mathrm{dT}^{2}}<0$ on the interval $0<\mathrm{t}<3$
The answer in part (a) is, therefore, an overestimate since $\mathrm{H}(\mathrm{t})$ will be concave down on $0<\mathrm{t}<3$.

2: $\left\{\begin{array}{l}1 \text { : tangent line equation using }\left.\frac{\mathrm{dH}}{\mathrm{dT}}\right|_{(0,91)} \\ \text { 1: answer (local linearity approximation) }\end{array}\right.$

2: $\left\{\begin{array}{l}1: \frac{\mathrm{d}^{2} \mathrm{H}}{\mathrm{dT}^{2}} \text { at } \mathrm{t}=0 \\ 1: \text { answer with reason }\end{array}\right.$

2017 AP $^{\circledR}$ CALCULUS BC FREE-RESPONSE QUESTIONS SCORING GUIDELINES Question 4

4. At time $t=0$, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ at time $t=0$, and the internal temperature of the potato is greater than $27^{\circ} \mathrm{C}$ for all times $t>0$. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation $\frac{d H}{d t}=-\frac{1}{4}(H-27)$, where $H(t)$ is measured in degrees Celsius and $H(0)=91$.
(a) Write an equation for the line tangent to the graph of H at $t=0$. Use this equation to approximate the internal temperature of the potato at time $t=3$.
(b) Use $\frac{d^{2} H}{d t^{2}}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time $t=3$.
(c) For $t<10$, an alternate model for the internal temperature of the potato at time t minutes is the function G that satisfies the differential equation $\frac{d G}{d t}=-(G-27)^{2 / 3}$, where $G(t)$ is measured in degrees Celsius and $G(0)=91$. Find an expression for $G(t)$. Based on this model, what is the internal temperature of the potato at time $t=3$?
(c) $(\mathrm{G}-27)^{-\frac{2}{3}} \mathrm{dG}=-\mathrm{dT}$
$\int(\mathrm{G}-27)^{-\frac{2}{3}} \mathrm{dG}=-\int \mathrm{dT}$
$3(\mathrm{G}-27)^{\frac{1}{3}}=-\mathrm{T}+\mathrm{C}$
$3(91-27)^{\frac{1}{3}}=0+C \Rightarrow C=12$
$3(\mathrm{G}-27)^{\frac{1}{3}}=-\mathrm{T}+12$
$(G-27)^{\frac{1}{3}}=-\frac{T}{3}+4$
$\left((G-27)^{\frac{1}{3}}\right)^{3}=\left(-\frac{T}{3}+4\right)^{3}$
$\mathrm{G}(\mathrm{T})=\left(-\frac{\mathrm{T}}{3}+4\right)^{3}+27$ for all times $\mathrm{T}<10$
$\mathrm{G}(3)=\left(-\frac{3}{3}+4\right)^{3}+27=54^{\circ} \mathrm{C}$
$5:\left\{\begin{array}{l}1: \text { separation of variables } \\ 1: \text { antiderivatives } \\ 1: \text { constant of integration } \\ 1: \text { uses initial condition } \\ 1: \text { solves for } \mathrm{G}\end{array}\right.$

Note: max $2 / 5$ [1-1-0-0-0] if no constant of integration
Note: $0 / 5$ if no separation of variables

