AP ${ }^{\circledR}$ CALCULUS BC

2017 SCORING GUIDELINES

 Question 6

 Question 6}

$$
\begin{aligned}
f(0) & =0 \\
f^{\prime}(0) & =1 \\
f^{(n+1)}(0) & =-n \cdot f^{(n)}(0) \text { for all } n \geq 1
\end{aligned}
$$

6. A function f has derivatives of all orders for $-1<x<1$. The derivatives of f satisfy the conditions above. The Maclaurin series for f converges to $f(x)$ for $|x|<1$.
(a) Show that the first four nonzero terms of the Maclaurin series for f are $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}$, and write the general term of the Maclaurin series for f.
(b) Determine whether the Maclaurin series described in part (a) converges absolutely, converges conditionally, or diverges at $x=1$. Explain your reasoning.
(c) Write the first four nonzero terms and the general term of the Maclaurin series for $g(x)=\int_{0}^{x} f(t) d t$.
(d) Let $P_{n}\left(\frac{1}{2}\right)$ represent the n th-degree Taylor polynomial for g about $x=0$ evaluated at $x=\frac{1}{2}$, where g is the function defined in part (c). Use the alternating series error bound to show that

$$
\left|P_{4}\left(\frac{1}{2}\right)-g\left(\frac{1}{2}\right)\right|<\frac{1}{500} .
$$

(a) $f(0)=0$
$f^{\prime}(0)=1$
$f^{\prime \prime}(0)=-1$
$f^{(3)}(0)=2$
$f^{(4)}(0)=-6$
$P_{4}(x)^{`}=0+1 x+\frac{(-1) x^{2}}{2!}+\frac{2 x^{3}}{3!}+\frac{(-6) x^{4}}{4!}$ $=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \frac{(-1)^{n+1} x^{n}}{n}$

3:
:
1: Derivatives
1: first four non zero terms

1: general term
(b) The series when $x=1$ is $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}$. This is the Alternating Harmonic series, $\frac{(-1)^{\mathrm{n}+1}}{\mathrm{n}}$, which converges by the Alternating Series error bound. The

1: Determine convergence

1: Correct explanation of why

Harmonic, $\frac{1}{\mathrm{n}}$, diverges since n is raised to a power less than two. Thus, this series is conditionally convergent because the absolute value of the series does not converge, even though the series converges.

$$
\begin{aligned}
& \text { (c) } \int_{0}^{x} f(t) d t=\frac{t^{2}}{2}-\frac{t^{3}}{6}+\frac{t^{4}}{12}-\left.\frac{t^{5}}{20}\right|_{0} ^{x} \\
& =\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{12}-\frac{x^{5}}{20}+\cdots+\frac{(-1)^{n}\left(x^{n+2}\right)}{(n+2)(n+1)} \text { where } n \geq 0
\end{aligned}
$$

(d) $\left|P_{4}\left(\frac{1}{2}\right)-g\left(\frac{1}{2}\right)\right|<P_{5}\left(\frac{1}{2}\right)<\frac{1}{500}$

$$
P_{5}\left(\frac{1}{2}\right)=\left|-\frac{\left(\frac{1}{2}\right)^{5}}{20}\right|=\frac{1}{(32)(20)}=\frac{1}{640}
$$

2: $\left\{\begin{array}{l}1: \text { first four terms } \\ 1: \text { general term }\end{array}\right.$

$$
\text { 2: }\left\{\begin{array}{l}
1 \text { : stating that } \\
\left|P_{4}\left(\frac{1}{2}\right)-g\left(\frac{1}{2}\right)\right|<P_{5}\left(\frac{1}{2}\right) \\
1: \text { finding } P_{5}\left(\frac{1}{2}\right)
\end{array}\right.
$$

