AP ${ }^{\circledR}$ CALCULUS BC 2018 SCORING GUIDELINES

Question 1

People enter a line for an escalator at a rate modeled by the function r given by

$$
r(t)= \begin{cases}44\left(\frac{t}{100}\right)^{3}\left(1-\frac{t}{300}\right)^{7} & \text { for } 0 \leq t \leq 300 \\ 0 & \text { for } t>300\end{cases}
$$

where $r(t)$ is measured in people per second and t is measured in seconds. As people get on the escalator, they exit the line at a constant rate of 0.7 person per second. There are 20 people in line at time $t=0$.
(a) How many people enter the line for the escalator during the time interval $0 \leq t \leq 300$?
(b) During the time interval $0 \leq t \leq 300$, there are always people in line for the escalator. How many people are in line at time $t=300$?
(c) For $t>300$, what is the first time t that there are no people in line for the escalator?
(d) For $0 \leq t \leq 300$, at what time t is the number of people in line a minimum? To the nearest whole number, find the number of people in line at this time. Justify your answer.
(a) $\int_{0}^{300} r(\mathrm{t}) d t=270$ people
(b) $f(\mathrm{t})=20-0.7 \mathrm{t}+\int_{0}^{t} r(\mathrm{t}) d t$

$$
\begin{aligned}
f(300) & =20-0.7(300)+\int_{0}^{300} r(\mathrm{t}) d t \\
& =80 \text { people }
\end{aligned}
$$

(c) 0 people $=f(300)-0.7 \mathrm{t}$
$\mathrm{t}=415$ seconds
(d) $f(\mathrm{t})=20-0.7 \mathrm{t}+\int_{0}^{300} r(\mathrm{t}) d t$
$f(t)$ achieves a minimum at $\mathrm{t}=33.013$ seconds
Candidates: $\mathrm{t}=0, \mathrm{t}=300, \mathrm{t}=33.013$
$f(33.013)=4$ people in line
$2:\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { expression for } f(\mathrm{t}) \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { linear equation equal to zero } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{c}1: t \text { when number of people is } \\ \text { minimal } \\ 1: \text { identifies all candidates } \\ 1: \text { minimum number of people }\end{array}\right.$

