AP[®] CALCULUS BC 2018 SCORING GUIDELINES

Question 3

- 3. The graph of the continuous function g, the derivative of the function f, is shown above. The function g is piecewise linear for $-5 \le x < 3$, and $g(x) = 2(x 4)^2$ for $3 \le x \le 6$.
 - (a) If f(1) = 3, what is the value of f(-5)?
 - (b) Evaluate $\int_{1}^{6} g(x) dx$.
 - (c) For -5 < x < 6, on what open intervals, if any, is the graph of *f* both increasing and concave up? Give a reason for your answer.
 - (d) Find the x-coordinate of each point of inflection of the graph of f. Give a reason for your answer.

(a)
$$f(1) = 3$$

 $f(-5) = f(1) + \int_{1}^{-5} f'(x) dx$
 $= f(1) - \int_{-5}^{1} g(x) dx$
 $= 3 - (-3(3) - \frac{1}{2}(1)(3) + \frac{1}{2}(1)(2))$
 $= \frac{25}{2}$
(b) $\int_{1}^{6} g(x) dx = \int_{1}^{3} g(x) dx + \int_{3}^{6} g(x) dx$
 $= 4 + \int_{3}^{6} 2(x - 4)^{2} dx$
 $= 4 + (\frac{2x^{3}}{3} - \frac{16x^{3}}{3} + 32x]_{1}^{6})$
 $= 4 + 6 = 10$
(c) $f'(x) = g(x)$
The graph of f is increasing and concave up on $0 < x < 1$
and $4 < x < 6$, because $f'(x) = g(x)$ is positive and
increasing on these intervals.
(d) The graph of f has a point of inflection at $x = 4$ since $f'(x) =$
 $g(x)$ is decreasing for $3 < x < 4$ and increasing for $4 < x < 6$.
1: answer