AP ${ }^{\circledR}$ CALCULUS BC 2018 SCORING GUIDELINES

Question 3

Graph of g
3. The graph of the continuous function g, the derivative of the function f, is shown above. The function g is piecewise linear for $-5 \leq x<3$, and $g(x)=2(x-4)^{2}$ for $3 \leq x \leq 6$.
(a) If $f(1)=3$, what is the value of $f(-5)$?
(b) Evaluate $\int_{1}^{6} g(x) d x$.
(c) For $-5<x<6$, on what open intervals, if any, is the graph of f both increasing and concave up? Give a reason for your answer.
(d) Find the x-coordinate of each point of inflection of the graph of f. Give a reason for your answer.
(a) $f(1)=3$

$$
\begin{aligned}
f(-5) & =f(1)+\int_{1}^{-5} f^{\prime}(x) d x \\
& =f(1)-\int_{-5}^{1} g(x) d x \\
& =3-\left(-3(3)-\frac{1}{2}(1)(3)+\frac{1}{2}(1)(2)\right) \\
& =\frac{25}{2}
\end{aligned}
$$

(b) $\int_{1}^{6} g(x) d x=\int_{1}^{3} g(x) d x+\int_{3}^{6} g(x) d x$

$$
\begin{aligned}
& =4+\int_{3}^{6} 2(x-4)^{2} d x \\
& =4+\left(\frac{2 x^{3}}{3}-\frac{16 x^{3}}{3}+\left.32 x\right|_{1} ^{6}\right) \\
& =4+6=10
\end{aligned}
$$

(c) $f^{\prime}(\mathrm{x})=\mathrm{g}(\mathrm{x})$

The graph of f is increasing and concave up on $0<x<1$ and $4<x<6$, because $f^{\prime}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ is positive and increasing on these intervals.
(d) The graph of f has a point of inflection at $x=4$ since $f^{\prime}(x)=$ $\mathrm{g}(\mathrm{x})$ is decreasing for $3<x<4$ and increasing for $4<x<6$.
$2:\left\{\begin{array}{l}1: f(-5) \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { answer } \\ 1: \text { reason }\end{array}\right.$

1 : answer with justification

